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Exercise 8.1 (4 points)
A polynomial over a field K in the indeterminate X is of the form f(X) = > 77 a;X?, where a; € K
for all i € Ny, and a; = 0 for all but finitely many i € Ny. Two polynomials Y ;o a; X* and > oo b; X"
are equal if and only if a; = b; for all ¢ € Ny. If a,, # 0 for some n € Ny and a,, = 0 for all m > n, we
also write f(X) = > ja;X", and we say that f has degree n (Abbreviation: deg(f) = n). The set of
all polynomials over K in the indeterminate X is denoted by K[X]. We equip K[X] with the addition

D ai X+ biXT = (a; + bi) X
i=0 i=0 i=0
and the scalar multiplication
A (Z aiXi> =Y (Ma)X' (A€ K)
i=0 i=0

You may without proof assume that these operations turn K[X] into a K-vector space.

Now let K be a field and let d € N be arbitary. In the following, K [X]<4 denotes the set of all polynomials
over K in the indeterminate X of degree smaller than d or equal to d, and likewise K[X]_4 denotes the
set of all polynomials over K in the indeterminate X of degree equal to d.

(a) Prove that K[X]<qU{0} is a subspace of K[X]. For that purpose show that for all f, g € K[X]<;U{0}
and all A € K the following holds: f — g € K[X]<q4U {0} and A\f € K[X]<4U {0}.

(b) Determine a basis and the dimension of the subspace K[X]<4 of K[X]. What is the dimension of
K[X]?

(c) Is K[X]=4 U {0} a subspace of K[X]?

Exercise 8.2 (5 points)
Let W C R* be the subspace generated by

ag:=(1,2,2,1), a2:=(0,2,0,1), a3:=(-2,0,—4,3).
Moreover, consider

af = (1,0,2,0), a5:=(0,2,0,1), aj:=(0,0,0,3).

We define B := {aq, a2, a3} and B’ := {a}, af, o4}
(a) Show that B and B’ are bases of W.
(b) Let 8 = (b1, ba, b3, bs) € W be arbitrary. Compute ]z, i.e. the coordinate column matrix ( Koordinaten-

Spaltenmatriz) of S with respect to the ordered basis B.
(c) Find a matrix P € M33(R) such that [8]g = P[f]s -

Exercise 8.3 (4 points)

Let K be a field, V' a 3-dimensional K-vector space and «, 3,y € V linearly independent over K. We
consider the ordered bases

Bi:={a,B,7}, By:={B,a,7}, Bs:={B,7,a}.
Now let v € V' be arbitrary.
(a) Find a matrix P € M3x3(K) such that [v]p, = Plv]g,.
(b) Find a Matrix P € M3,3(K) such that [v]g, = P[v]a,.
(¢) (optional/no points) Find further ordered bases B; of V' consisting of o, 8 and . How do the respec-
tive matrices P look like such that [v]g, = P[v]s,?



Exercise 8.4 (3 points)
We consider the 5 x 5-matrix

12 0 3 0
12 -1 -1 0

A=]0 0 1 4 0 |€MysR).
24 1 10 1
00 0 0 1

Determine a basis and the dimension of the row space W of A.



